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A B S T R A C T  

We construct uniform embeddings of the Cayley graphs of hyperbolic 

groups and cyclic extensions of torsion-free small cancellation groups in 

Hilbert spaces. 

I n t r o d u c t i o n  

In [Bo] J. Bourgain has shown that in superreflexive Banach spaces there is no 

bi-Lipschitz embedding of a regular tree. In this paper we discuss a weaker notion 

of embedding, a uniform one. 

Let A and B be metric spaces and let e : A ~ B be an embedding, e is called 

uniform if it is Lipschitz and there exists a function ~ so that lim ~(t) = oo and 

for all z, y E A: 

dB(e(x), e(y)) > ~(dA(x, y)). 

A uniform embedding of the Cayley graph of a f.p. group into a Hilbert space 

plays an essential role in the work of A. Connes, M. Gromov and H. Moscovici 

[Co-Gr-Mo] around the Novikov conjecture. 

By modifying the construction of canonical representatives which was intro- 

duced in [Ri-Se] we construct uniform embeddings for the Cayley graphs of hy- 

perbolic groups and of cyclic extensions of small cancellation groups satisfying 

condition C' (~). 
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In section 1 we bring some preliminaries, and modify the construction of canon- 

ical representatives introduced in [Ri-Se] for the present purposes, in section 2 we 

prove certain stability properties of the construction and in section 3 we use this 

stability to get uniform embeddings of hyperbolic groups in Hilbert spaces. In 

section 4 we apply results already achieved in [Ri-Se] for torsion-free small can- 

cellation groups, to get uniform embeddings of cyclic extensions of such groups 

in Hilbert spaces. 

The whole problem of uniform embeddings of groups in Hilbert spaces was 

introduced to me by Prof. M. Gromov. I am greatly indebted to him for some 

valuable discussions around these questions. On the concept of canonical rep- 

resentatives I've learned from my advisor Prof. E. Rips. Although we do not 

use the proposed terminology, we believe they should be called Rips' canonical 

representatives• 

1. Pre l iminar ies  

To construct our embeddings for hyperbolic groups we need to modify some of 

the definitions and constructions introduced for solving equations in torsion-free 

hyperbolic groups [Ri-Se]. 

Let F = <  GIR > be a/Lhyperbolic group with a Cayley graph X.  A #-local 

geodesic in X is a path f : [a, b] --* X satisfying : 

length(f([a ' ,  b'])) < /z  =~, length(f([a ' ,  b'])) = If(a') - f(b')l.  

A h-local quasigeodesic in X is a path f : [a, b] ~ X satisfying 

length(f([a ' ,  b'])) ___ 10006,k =*, length(f([a ' ,  b'])) _< )~ l f (a ' ) -  f(b')l. 

De~qnition 1.1: Let BL~ be the ball of radius r in the Cayley graph X. Let #0 = 

2000062(1 + log(10~))• A vertex v E X belongs to Zone k of X,  zone (v) = k, if 

v E BLk#o\BL(k-1)~,o. | 

De~nition 1.2: Let B0 = 0 ,  B m =  ( 5 - 2 " )  s'2~"-1 A sequence b = {bj} °~ 1 < 
• - j - - - - 1  ' - -  

bj _~ 10 is called prefix-avoiding if for every 1 ~_ m < oo and every n; 

Bin-1 Bm 
- - < n < - - - 1  
5 . 2 "~ - - 5 . 2 m 

the sequence b 5 . 2 " - , + 1 , . . - , b s . 2 m ( n + l )  does not appear as a consecutive subse- 

quence of the prefix b l , . . . ,  bs.2"~.n. | 
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The following definition is similar to definition 1.1 of [Ri-Se], modified for our 

purposes: 

O 0  
Definit ion 1.3: Let b T = {b T }j=l be a prefix-avoiding sequence. A T prefix- 

avoiding coarse piecewise geodesic f : [a, b] --~ X ,  a = cl < dl <_ c 2 . . .  < dq = b, 

is a 105-local quasigeodesic so that  f([ci ,  did is a/~0-1ocal geodesic and : 

l z o n e ( f ( d , ) )  - zone ( f (a ) ) l  > 10. 

[zone( f (d i ) )  - z o n e ( f ( d i - , ) ) [  >_ 3bT 2 < i < q - 1. 

length(f([dl ,  ci+l])) _< 25 1 < i < q - 1. 

A restriction flick,rid is called sub-local geodesic and a restriction f[[d~,c~+d is 

called bridge. 

Definition 1.4: ([Ri-Se], 2.1). Let w E F be given. A vertex v E X is called an 

elector of w with respect to a criterion T if there exists a map f : [a, b] ~ X 

through v so that:  

(i) f ( a )  = id; f (b )  = w. 

(ii) Let h : [ a , f - l ( v ) ]  ~ X be given by h(a + t) = f ( f - l ( v )  - t). Then h and 

fl[i-~(v),b] are T prefix-avoiding coarse piecewise geodesics. 

(iii) v lies on a #0-local geodesic e, where e is the union of the first #0-sub local 

geodesics of the prefix-avoiding coarse piecewise geodesics h and fl[l-l(v),b] 

to 

id 
~ ~  " , 2 ' ~ ~ "  

The set of all electors with respect to a criterion T is called T-cylinder of 

w, Cr(w).  

LEMMA 1.5: ([Ri-Se], 1.2). Let 7 = [id, wl be a geodesic segment, let v e CT(W) 

and let f :  [a, b] ---} X; f ( a )  = id; f (b )  = w be a map  through v satis fying the 

condit ions o f  the above definition. Let  g : [c, a~ ---} X be a sub-local geodesic o f f  

and let z E g satisfy: 

min([z - f(c)[, [z - f (d)D >_ 110052(1 + log(105)) 

then z is 25-dose to 7. 
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LEMMA 1.6: With the above notations let gi : [ci, di] ~ X be the i-th sub local 

geodesic of Ylts-'(v),bl and suppose Izo~e(f(di)) -zone(f(di_~))l  > 3b T. Let 
di-1 < t < di be the first va/ue for which Izone(f(t)) - zone(f(di-1))l  = 3b T, 

and let Zo be one of the closest points to f ( t )  on 7. Then// 'we modify f by setting 

di = t; f ( c ~ + l )  = z0; f ( d ~ + ~ )  = w we have a new map through w satisfying the 

conditions of Definition 1.4. 

The lemma is a modified version of lemma 1.3 of [Ri-Se], the proofs are identical 

and therefore we prefer to skip it. 

Definition 1.7: ([Ri-Se], 3.1). Let 7 = lid, v]; v E X be a geodesic segment in 

the Cayley graph X. A geodesic not shorter than 7 in a 26-neighborhood of 7 

is called a channel of 3'. The #0-capacity of F, Ca(#0), is the maximal number 

of different channels of a geodesic with length/~0. A loose bound on Ca(t~o ) is 

2 v2'~° , where v2~ is the volume of a ball with radius 25 in X. | 

2. Stability Properties of Cylinders 

To get uniform embeddings of the Cayley graph X in a Hilbert space, we need 

the T-cylinders to have certain global stability properties, i.e., for any two close 

words wl, w2 E F we want the symmetric difference between their cylinders 

CT(wl)ACT(w2) to be controlled. Unfortunately for hyperbolic groups we are 

not able to get cylinders with the quality we got for small cancellation groups 

in [Ri-Se] (see section 4 below), i.e., a global bound for the symmetric difference 

in terms of the distance Iwl - w21. However, the following theorem turns to be 

sufficient for uniform embeddings: 

THEOREM 2.1: Let wl,w2 E F; IWl - w~ I = 1. For every 1 < m < oo let 

p ( m ) =  l og2 -~  . 

Let £TB,~ = 3. ~B_m 1 b T, and Om be the set: 

T Dm = {C~(w,)\C~(w~)} n {~ ~ __ zo..(~,)- zo~.(v) <_ ~(~)~,  
] 

then ID.,I < 2 .  Ca( i ,0)  • ~2, "~'0 

Prooe: Let "~ = [id, w,]  he a geodesic  ~egment and let ~, = [~,, ~ ] ;  ~ = [ ~ ,  ~,1, 

7"3 = [vs, v6] be subsegments of 7 so that: 
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[ ,5 , ,6]  = 3" n { ,  e Xlzon~(v) = z o . ~ ( w , )  - e ~  + 100}. 

[va, va] = 3' N {v e X l z o n e ( v )  = z o n e ( w , ) -  ~ ,~  + 102}. 

Iv, , ,2]  = 3' n { ,  e Xlzon~(w,)  - e ~  + 103 _< zone(,)  < zone(w1) - ~oer,. }. 
Recall, the electors are picked according to the existence of a pair of prefix- 

avoiding coarse piecewise geodesics through them. Let ul,  u2 6 CT(Wl ) \CT(w2);  

gT _< zone(w1)  -- zone(ui)  --< iB,(,,)T (i = 1,2). 

We have fli : [a, b] --* X ,  T prefix-avoiding coarse piecewise geodesics so that 

8i(a)  = u~; 8~(b) = ~ .  

Claim 2.2: Suppose 81,82 occupy the same channel W of either r2 or va , then 

zone(u ,  ) = zone(u2).  

Proof." Let Vl, v2 be the #0-sub local geodesics of ill, 82 which pass through W. 

Clearly W can not be v2 or ra themselves, otherwise we can modify fli by contin- 

uing through q' and after crossing 20 zones make a bridge to a geodesic between 

the identity and w2, so we have ui E Cv(w2)  (see Lemma 1.6), a contradiction. 
| 

Let exi be the number of zones vi has to get through after passing through W 

and let t], t~ , . . ,  be the lengths in zones of each of the #0-sub local geodesics of 

8i afterwards. 

LEMMA 2.3: exl = ex2 and t] = t~ for all po-sub local geodesics over Vl (i.e. in 

a 1100~2(1 + log(lO6)) neighbourhood of~'~). Moreover the t~ are identical with 

the corresponding T . b/(i,~) , j ( i ,  s) = s + s* o from the T prefix-avoiding sequence. 

Proof'. Suppose exl = ex2 and let g be the first index for which t~ # t] (say 

t] < t2). Then we can modify 8~ by continuing through 82 after passing through 

W and in the g #0-sub local geodesic of 82 make a bridge to 3' (according to 

lemma 1.6) and then a bridge to a geodesic from the identity to w2 and we have 

Ul e CT(W2) .  Clearly if t~ > bTjo,s) we can modify 81 by making a bridge after 

crossing b T zones with the s #0-sub local geodesic of 81 and have ul E CT(W2). j(1,~) 
If exl > ex2 we can modify 82 by continuing through 81 after passing through 

W and then make a bridge to 3' and have u2 E CT(W2). | 

4 T 4~Tm " 
Now, rl crosses more than ~B , ,  zones, and so at least 1-TgS-/z0-sub local 

geodesics. By our assumptions zone(w~) - zone(ui )  < ~T for which we Bv(m ) ' 

have the following simple fact: 



176 Z. SELA lsr. J. Math. 

LEMMA 2.4: In a prefix-avoiding sequence, there are no identical subsequences 

of consecutive elements of length 3 • 5 . 2  m in a prefix of length Bin. 

Proof'. An easy exercise which we leave for the reader. | 

We are interested in the sequences for the ui (i = 1,2) which are included 

in a prefix of length Bp(,,). So by the lemma every subsequence of consecutive 

elements of length 

3 . 5 . 2  p( ' )  _< 3"Bin < eT.....m ~ < eTB,, 4 

40 - 40 150 

is disjoint and so by Lemma 2.3 so I = s~, i.e., ul and u2 the sub-local geodesics 

of 131 and 132 passing through W, have the same index in the prefix-avoiding sub 

local geodesics 131 and 132. 

Suppose zone(u2) < zone(ul). The nmnber of #0-sub local geodesics in 13~ 

and 132 before passing through W is identical, and so there must be a sub local 

geodesic gjo of 132 which crosses nmre zones than the sub local geodesic with the 

same index in ill, and therefore more than 3b~0 , the minimum required for a 

prefix-avoiding coarse piecewise geodesic. Clearly we can modify f12 by making 

a bridge to 7 (Lemma 1.6), after passing 3b T zones in gio and get u2 E CT(W2), 
a contradiction. | 

Having the claim, the theorem follows easily since the number of electors of 

CT(W~) in a zone is bounded by #0 "v2~ (every elector is 2~-close to 7), and the 

number of channels over r2 and r3 is bounded by Ca(#o) for each. Note that by 

the conditions on prefix-avoiding coarse piecewise geodesics, it must occupy some 

channel over either 7"2 or ra if its starting point is according to the conditions of 

the theorem. | 

3. U n i f o r m  E m b e d d i n g s  o f  Hyperbo l i c  Groups  

Let H be a Hilbert space and let {ei}i°°=l be an orthonormal basis of H. At each 

vertex v of the Cayley graph X we place a distinct basis element denoted by ev. 

Definition 3.1: Let F be a 8-hyperbolic group and let _b T = {b T } be a prefix- 

avoiding subsequence. A T embedding UT : F ~ H is defined by: 

1 1 
vT(w) = I , -  wl 0 < -< -2 

| 
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LEMMA 3.2: UT is Lipschitz. 

k O0 Proof." Let { ,},=0 be the sequence given by k0 = 1; ks = p(k,-l) .  From the 

definition of the function p it is not hard to see that ks > e s. (In fact it grows 

much faster, but for us it is enough.) 

Let wl,w2 E F; Iwl - w21 = 1. We have by Theorem 2.1: 

I U T ( ~ , )  - u r ( w ~ ) l  2 _< 

+ 

+ 

I v -  w,I ~Or(wl)\Cr(w2) 

I e~ 2 

E Iv _ w2[O, 
"~CT(W2)\CT(Wl) 

E ( i  v 1 ev 2 
.eC~(,o,)nCT(,~=) --W'I~' IV - - L 2 I " )  

O0 

< 2eTv2s + 2 ~ 2Ca(/to)-/to.v2s 

.=0 (er.) 2° 
1 1]  2 

+ v 2 ~  (d_iT1)~ d~ 
d=l 

-< f ( 6 ,  "2, ,  '~). 

THEOREM 3.3: UT is uniform. 

Proof." Let wl,w2 E r .  Since electors are 2~-close to the corresponding 

geodesics, we have for at least one of the wl, say wl: 

CT(w2)f"I {v  E X [ ]wl -- v] < ]Wl - W2[ -- 20~} = ~" 

But all the vertices which lie on a geodesic from the identity to wl and located at 

distance bigger than 10#0 from both wl and the identity are necessarily electors. 

Therefore: 

IUr (~2 )  - u r ( w ~ ) l  > [ 1'~1 ~ 1-206 _ _  

d=lOpo 

1/2 

1 
d2a = ~ ( I w l  - w 2 1 , ~ , ~ )  
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where for fixed (~ and a; 0 < o~ < I we have 

lira qa(Iwl - w21,6, a) = oo. 

I 

Isr. J. Math. 

4. Cyclic Extensions of Small Cancellation Groups 

For small cancellation groups satisfying condition C'(~) our cylinders in [Ri-Se] 

are globally stable. In particular we got the following theorem for torsion-free 

o n e s :  

THEOREM 4.1 (([Ri-Se], 4.3)): Let F = <  GIR > be a torsion-free group, sat- 

isfying C'(1) .  There exist canonicM representatives OT : F ~ F(G)  so that i f  

¢'J ,,' "" F(G)  that : w l ,w2 ,w3  E F; waw2w3 = 1 then there exist ci, j ,~o,vl E so 

(i) 

0i) 

o~(w.) = ~1 y .  yl c, (y~)-'  f '  (uo~) - '  . 

e~(w2) = yo ~ y2~ ~ c2 (y~)-'  ,3~ (yo~)-,, 

e~(~3) = y0 ~ f~  ~ c~ ( ~ ) - '  s '~ (y0~) -1 

ClC2Ca; f l l f l a ;  f21f22; fa2fa3 are elements in < R >F(a). 

(iii) 

where 

length(ci) < S0(po + 6)vz6(206 + 1), 

l eng th( f  ij) < 40(tto + ~f)v26(20~ + 1), 

/to = 20000r2(1 -J- log(10r)) and r = max(~,max length(r/)). 
riER 

Remark: With minor modifications the theorem remains valid for C'(-~) groups 

with no 2-torsion. | 

Let F = <  GIR > be as above and let M be a cyclic extension of F, so that we 

have: 

1--* Z ~ M ~ F ~  1. 
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Let z be a generator of the normal cyclic subgroup Z and let X l , . . . ,  xk  E M so 

that xi is mapped to gi E G, the generating set for the small cancellation group 

F under the homomorphism • : M ~ F. Let XM be the Cayley graph of M 

with the generators {z, x l , . . .  ,xk}.  Let M0 4M be the centralizer of Z in M and 

F0 ,~ F its image in F. W.l.o.g. xl ¢ M0 if the extension is not central. 

Definition 4.2: For each w E F let AT(W) E M be the element obtained from 

8T(W) E F(G) by substituting each gi with xi. Clearly, each element m E M can 

be represented uniquely as: 

m = z " ( " ~ , ( ~ ( m x - ~ ' ~ " ~ ) ) x ~  ("~ 

where e(m) is 0 if m E M0 and 1 otherwise. | 

oo Let H be a Hilbert space with an orthonormal basis {ei}i=l. To each vertex 
o o  

of the Cayley graph v E Xr  we adjoin a distinct element from the set {ei}i=2 

denoted by e~. Let w E F be given. We denote by V(w) the set of all vertices 

v E Xr which correspond to prefixes of the canonical representative OT(w) (i.e. 

all the vertices on the canonical path from the identity to w). 

Our embedding UT : M ---* H will send an element represented by the form 

described in Definition 4.2 to the vector: 

VT(m) = v(m)e, + ~ ~ 
vev(,t,(m~"(-))) 

LEMMA 4.3: There exists a constant q (depending on M and the choice of 

xa , . . . ,  zk), so that for all triples wl, w2, w3 E F; wlw2wn = 1, 

Proof: By Theorem 4.1 we have: 

0T(Wl) ~ yl f l l  yl C1 (Y2) - l f 2 1  (?]2) - I  ' 

e ~ ( ~ )  = y0 ~ s ~ y~ ~ (y~)- '  f ~  (~0~) - '  , 

0 ~ ( ~ )  = y0 ~ f ~  ~ c~ ( y l ) - '  S '~ (~o~) -~ 

Denote by ck, yt k, fkt  the element in M obtained by substituting each of the gi 

in the original words by xi. The lengths of the ck and fkt  are bounded, so they 

have finite number of possibilities. Therefore there exists a constant So for which: 

f-l lfl3 = zS,; f21f-~2 = zS,; ]32]33 = zSa; ~1C2C3 = zS4 and [si[ < so 
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which implies 

, ~ r ( ~ l ) ~ r ( w s ) ~ r ( w ~ )  = z + ' '  z ±~ '  ~ ± ' ~ z  ±~ '  = ~'  and Itl < 4so = q. 

(m2z~'(m~)) -1 ( m i x ;  "( ' ' ) )  = x;('~')xix~ -'('=~). 

Therefore, by Theorem 4.1: 

Z eV-- Z 

and: 

z ~'(m')-~'(ml) = AT (~(m2x'l '(m")) -1 AT (k~(mlxr '~(m')) • (x;(m"xjx l ' (m'))  -1 

which by Lemma 4.3 gives: 

So: 

e~ I _< [160(/~0 + ~)v26(20g + 1)] 1/; 

i v ( m 2 )  - v ( m , ) l  < q 

JUT(m1) -- UT(m2)] < [160(po + $)v~6(20~ + 1)11/~ + q. 

THEOREM 4.5:  UT is uniform. 

Proof'. Let ml,ms  6 M. By Lemma 4.3: 

(,T,[[-- ----~(111! ) ~--1 __ t:(ln~) ~ "XT(@(mlxl'('~x)))AT~,t,"'la~I I "~s~l 1] =ztAT(m2x' l  (m')) 

where It] < q. Therefore: 

Ira1 - ms] - 2 -  q < Ira1 - m s [ -  2 -  t 

<_ + 

| 

Claim 4.4: UT is Lipschitz. 

Proof: Let ml,m2 E M; Ira1 -m2[  = 1. 
If ml  = m2z +1 then m~ = z+'(m*)m2,$(ml) = ¢2(mz), e(m~) = e(m2) and 

I ~ ( m , )  - ~ ( m s ) l  = 1, so I U r ( m , )  - U r ( m s ) l  = 1. 

Otherwise, let ml = msx i. We have: 
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By Theorem 4.1 we have 

So we may conclude 

I,m - - 2 - q - 160 (po  + 6 )v2~(206  + 1) <_ I U T ( m l )  - UT(m )I =. 

Remark: The referee has pointed out that the whole argument given in section 

4 works if we only require the group M to be an extension of F by a f.g. virtually 

abelian group Z, such that the action of M on Z by conjugation has finite orbits. 

| 
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